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Kilmister's alternative field equations in general relativity: 
static spherically symmetric solutions 

B. 0. J. TUPPERf and G. W. PHILLIPS 
Department of Mathematics, University of Exeter 
izIS. receiz'ed 9th July 1969 

Abstract. A method of solving the alternative field equations in general 
relativity proposed by Kilmister is discussed and solutions are found for the case 
of static spherically symmetric space-times. 

1. Introduction 
The purpose of this article is to investigate certain alternative field equations in 

general relativity which have been proposed by Kilmister (1967). We shall attempt to 
clarify certain points in Kilmister's article, and shall show how solutions may be 
obtained, confining our attention to static, spherically symmetric space-times. 
Throughout the article Greek letters are tensor suffixes and Latin letters are ennuple, 
or tetrad, suffixes. Both types of suffix take the values 1, 2, 3,4.  

Kilmister points out that Einstein's field equations 

R,, = 0 or R,, = Xga, 
or, in matter, 

- K T,, = R,, - Qg,,(R - 2X) 
have solutions which are in conflict with Mach's principle, In  particular, the Schwarz- 
schild solution describes the field of a single central mass in isolation from the rest of 
the Universe, whereas, according to Einstein's interpretation of Mach's principle, 
such a particle should have no mass and no gravitational field. In  an attempt to 
overcome these difficulties, Kilmister reformulates the field equations of general 
relativity by abandoning the use of covariant differentiation in formulating the geo- 
desic equation in a covariant fashion. Instead he uses an ennuple system, or tetrad, 
hia, to define four Lie derivatives, 9u". The ennuple hia and its inverse hia satisfy 

i 

and 

where q i j  is the Minkowski metric tensor ( - 1, - 1, - 1, 1). The ennuple can be used 
to define two affine connections, namely 

AuOy = hiahi7,, = -hi h." Y z $ 0  
and 

so that 
= hiahio,y = -hi&iQ,7 

Aagy = I?:,. (3) 
We denote covariant differentiations with respect to AaBy and I'2,by a single line 1 and 
a double line [ /  respectively. Now the Lie derivatives 9 v a  are given by 

a 

95' = (h,'~",,, - hi",,.') 
i 

t Now on leave of absence at Department of Mathematics, University of New Brunswick, 

149 
Fredericton, New Brunswick, Canada. 



150 

so that 
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viL?va = vYhiy(htva,o - hia,0v4) 
i 

= d v a S ,  + vRAagrvY 

= E ~ V ' , ,  + V * A ~ ~ ~ V Y  (4) 
= vb",o ( 5 )  
= v W o  + c"Oyvw 

Cab, = *"BY - G Y >  ( 6 )  

where 

and the semicolon denotes covariant differentiation with respect to the Christoffel 
bracket connection {$,>. Hence the equation of a geodesic is 

viL?va = CaSyv*vY. 
i 

Note that from equations (3) and (4) it follows that (5) can be written in the form 

v i9v"  = v ~ 7 f I l o .  
i 

The affine connection rgy, defined in (2), is such that the covariant derivatives of 
the h t  are zero with respect to it, since 

hiall, = hia,q + rF,hiY 
= hi",, - h',hja,ohiY 
= hia,q - 8iJhj",g 
= 0.  

It follows that the curvature tensor of Iy is zero. Now the equation Cagy = 0 implies, 
from (6 ) ,  that 

and so from (1) and (2) 
AaBy = I?:, = (iy}. 

Hence { ; f y }  has zero-curvature tensor and the space is flat. Kilmister then states the 
converse, i.e. that the presence of a gravitational field is manifested by non-vanishing 
Cagy. We shall clarify this statement in 5 3.  

Kilmister takes the view that the gravitational field is described by all sixteen 
ennuple components, so that it is the ennuple, rather than the metric tensor, which 
has the primary physical significance. Accordingly, sixteen field equations are 
required and Kilmister suggests 

Cagy;a = 0 or CaByla = 0. 
Kilmister calculates that 

and 

where K,, is the contracted curvature tensor formed from By considering the 
third term on the right-hand side of each equation, Kilmister selects the first equation 

ca, y;a = R, y - K, y + Cuba,  y + C", s Cb, 7 

ca,r,a = Roy - K,, + C",a;y - c',6cbyu 

(7)  

(8) 



Kilmister's alternative field equations 151 

as the more suitable. However, as we shall show in 9 2 ,  Cap, is zero, so the choice 
between the two equations must depend only upon the solutions that they permit. 

The  basic mathematics described in this and in the subsequent section can be 
found in greater detail in the works of Cartan (1951) and Schouten (1954). 

2. The tensor Cap, and possible field equations 
From equations (1) and (6) we have that 

CU,r = h*"hZY,, -(;,I 
= hia(hiY,, - {ysg}hid) 

i.e. 
Ca, = hiahiy;,. 

hiahjYhk4Cu~y = hly;fihjYhkB = Y i i k  

If follows that 

where 

(9) 

CClBY = gadCd,y 

and yi jk  are the Ricci rotation coefficients (Eisenhart 1926). Since the Yi jk  are anti- 
symmetric in the suffixes i and j ,  it follows that CaBy is antisymmetric in CI and y and 
hence 

so that the reasons for Kilmister's choice between his two sets of suggested field 
equations no longer hold. The equations (7)  and (8) now read 

P,, = 0 

The  field formed by equating expressions (10) and (11) to zero are of the same 
type as Einstein's field equations, i.e. they are covariant second-order differential 
equations for the metric tensor, and hence of the ennuple, and linear in the second- 
order terms. The  question now arises : what other equations of this type can be formed 
from the CUD,? One obvious equation is 

C",,llu = R,~-K,,+C",,C,-Ca,,CdUy = 0 (12) 

where C, = CB4,, and is not to be confused with Kilmister's C, = CRa4 which, as we 
have seen, is zero. Another equation suggests itself when we note that 

but 

so that we can consider the equation 

g u 6 C , j ~ r ~ a  = RBy- KBY + CagyCa- Cag~Cdyu = 0. (13) 
Note thatgadC6Byla = -ga6Cy4dla, whilstga4C,ByI, has six components only, so (13) is 
the only possible covariant equation of its form. Note also that the mixed and 
contravariant forms of (13) will have additional terms due to the non-vanishing 
covariant derivative of g,, with respect to A,,,. 

Further field equations of this type can be formed by contracting the tensor 
C", before differentiating, for example 

CYra;, = C,;, = 0 (14) 
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is an equation of the required type with sixteen independent components. Other such 
equations are e,,, = ea;,- cya,c, = 0 

e,,,, = c";, - cy,crc7 = 0 (16) 

(17) 
and 

There appears to be no reason, other than the solutions they admit, why any one of the 
equations (10)-(17) should be preferred to the others. In  this article we shall consider 
only Kilmister's choice CnBy;a  = 0. 

3. The ennuple in flat space-time 

g"6Cgcr4,, = e/j;7 - c6,yc, - ea6,C6", - C6"./C6", = 0. 

In  a flat space-time with' Cartesian coordinates, i.e. with metric 

ds2 = dt2 - d 2  - dy2 - dz2 (dx4)' - (d&)' - (d2) '  - (dx3)' (18) 

hiahin = qii and hiahlo = qua. (19) 
the ennuple hin satisfies 

The  general solution of equations (1 9) contains six arbitrary parameters corresponding 
to the six parameters of the group of Lorentz rotations. If we write the components 
of the four 4-vectors h," as a 4 x 4 matrix, the rows representing each vector, then the 
matrix hia satisfying equations (18) is, in general, any product of the six matrices 
HZ3(v.1) ,  H31(v.2) ,  H 1 Z ( v . 3 ) ,  H14(P1),  H24(P2), H 3 4 ( P 3 )  given by 

for spatial rotations about the x axis, and two similar matrices H31(~.2), H12(~3) ,  for 
spatial rotations about the y and x axes, and also 

Lsinhp, 0 0 coshp,. 

for rotations in the (x, t )  plane, and two similar matrices HZ4(p2), H34(/33), for 
rotations in the ( y ,  t )  and (x, t )  planes. 

We shall call the three parameters v.,, c ( ~ ,  c13 the 'circular parameters' and the 
three parameters PI, Pz, p 3  the 'hyperbolic parameters'. These six parameters are, 
in general, functions of the four coordinates x". The product of the six matrices, in 
any order, will be denoted by 2. The form of Z will depend on the order of multi- 
plication, but whatever that order, % will always satisfy (19), i.e. in matrix form 

L o  0 0 1 1  
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If we use coordinates other than Cartesians, (19) and (20) must be replaced by 

h,"hj, = hiuguBht = ~ i j  and hzaht4 = g,, (21) 

x9 9 2 F T % T =  6 (22) 

9 9 9 T  = b. (23) 

hia = Z2F. (21) 

(25) 

and 

respectively, where 29 is the matrix of the componentsgaB of the metric tensor, and F 
is a matrix satisfying 

The  matrix representation of the ennuple components hi" will then be 

For example, consider the flat space-time with spherical polar coordinates, i.e. 

ds2 = dt2 - dr2 - r2 de2 - r2 sin20 d$2. 

In  this case 9 is the matrix 

0 
1 
r 
- 

0 

0 

0 

0 

1 
r sin 9 

0 

0 "1 
O I *  1 

Consider now the tensor Cagy in a flat space-time. Kilmister showed that the 
vanishing of Cagy implied that space-time was flat, but what of the converse result? If 
we use Cartesian coordinates, i.e. a metric of the form (18)) then, since the {g?} are all 
zero, we have 

so that CUB, = 0 if, and only if, hiy,B = 0, i.e. if the ennuple components are constants. 
Since the hi" are unit vectors it follows that, by a constant four-dimensional rotation, 
the ennuple components can be reduced to the form 

C",, = hiuhi,,, 

This ennuple corresponds to the general ennuple, represented by 8, with all the 
six parameters q, c12, c13, PI, f i z ,  /I3 set equal to zero. 

The dependence of the vanishing of CaBr on the choice of ennuple can be illustrated 
by considering the two-dimensional flat space 

ds2 = dX2 + dy2 (dX1)2 + (dX2)2. 

The  most general ennuple depends on one parameter $ = $(x ,y )  only and can be 
written in the form I. (28) 

cos+ -sin Z,!J 

= [sin+ cos+ 
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The non-zero components of Ca,, are 

c;l = -Cl2 = #,J 

c2 2 1  - - -Clzz  = 

Hence, CaR, = 0 if, and only if, # is a constant. In  this case the ennuple can be taken, 
apart from constant rotations, to be of the form 

If we introduce polar coordinates so that the metric of the 2-space is 

cis2 = dr2 + r2 de2 

then the general ennuple is of the form 

1 
cos# -s in+ 1 0 cos+ - - s in#  

= [sin# cos j [o j = [sin+ i c o s i ] *  

With this ennuple the components of CaSy are 

Cll2 = - 4 1  

c211 = 4 . 1  

c2,1 = - (+,2 - 1) 

c12z = - y ( # , 2 -  1) 

1 
r 
1 
r 

where the comma followed by 1 or 2 now indicates partial differentiation with respect 
to Y, 6' respectively. Thus CaRY = 0 if, and only if, # = 8 (apart from a constant 
rotation), so that the required ennuple is 

(31) 

which is precisely the ennuple obtained from (29) by the coordinate transformation 
(x, y )  -+ (Y, e), as expected. 

Note that if we had chosen the simplest ennuple for this coordinate system, i.e. 

which corresponds to (30) with + = 0, 
Ca,y;er # 0. Thus, despite having a flat 

then not only would Ca,, # 0 but also 
space, the vacuum-field equations are not 
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satisfied if the ennuple is assumed to be too simple. I n  this case we have 

1 
pzl = -- Clzz = Y 

Y 
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1 
Y 2  

C",,;, = -- Ca22;a. = - 1. 

Returning to Minkowski space-time, consider the metric (25) expressed in spheri- 
cal polar coordinates. Under the transformation (x, y, z )  -f (Y, 8, 4) the ennuple (27) 
becomes 

hiu = 

1 1 sin 4 
Y Y sin 0 

sin8cosq5 -cosi9cos$ - -- 0 

1 1 cos4  
s i n e s i n 4  -cos0s in+ -- 0 

r Y sin 0 
1 

cos e - -s in0 0 0 

0 0 0 1. 
I 

Comparing this with (24) and noting that % is given by (26) we have 

s i n 8 c o s 4  cosBcosq3 -sin$, 0- 
s i n 8 s i n 4  cosBsin4 cos4 0 

0 0 0 1  

(33) J .-[ cos 8 -sin 0 0 0 '  

This corresponds to the general product matrix of the six Lorentz rotation matrices 
with p1 = Pz = p3 = 0 and u1 = in,  u2 = 8- i n ,  u3 = - 6, so that the ennuple 
now has three non-zero parameters. These values for the circular parameters are 
obtained by considering the product of the circular matrices in the order H12H31H23 ; 
other orders of multiplication will lead to different values for xl, x z ,  x 3 .  The ennuple 
(32) is, apart from constant rotations, the only ennuple leading to CaB./ = 0 for the 
space-time (25). 

If we write the Minkowski space-time in terms of cylindrical polar coordinates 
in the form 

then under the transformation (x, y, z )  --f (Y, e,.) the ennuple (27) becomes 

ds2 = dt2 - dr2 - r2de2 - dz2 

hi" = 

 COS^ - 

sin 0 

0 i 0 

1 
-sin 0 
r 
1 
r 

0 1 0  
0 0 1  

and the corresponding product matrix &' has only one non-zero parameter u3 = - 8. 
Consider now the space-time 

ds2 = dT2 - d t2  - U2(dv2 + di2) 
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where U = T - (. This is a A at space-time and is a special case of the metric used by 
Bondi et al. (1959). This metric can be obtained from (18) by the transformation 

X = + i ( T  - t)(T' + I ')  
Y = 71k-t) 
x = ((7-t) 
t = T++(T-()(T'+<').  

Under this transformation the ennuple (27) becomes 

1 
-7 

1 
U 

- 
21 

0 

1 
-17 - 
U 

' I  0 

1 
U 

and the corresponding product matrix % has six non-zero parameters given by 

sin x1 = 27(4( 1 - I') + (7' + 52)2}-1'2 
sin x2 = 21{4 + (7' + 52)2)-112 
sin c(, = 27((7' + 5')[{4( 1 - <') + (q' + Zr')>"}{4(1 + 7') + (7' + I')')] 

sinhp, = 8(v2 + 5') 
sinhp, = -2~{4+(~2+12)2}-112 
sinhp, = -2<{4(1 + ~ 2 ) + ( q 2 + 5 2 ) 2 ) - 1 1 2 .  

These values are found by taking the order of multiplication to be 

8 = H12H23H31H34H24H14;  

other orders of multiplication will lead to different values for the six parameters. 
Summarizing, we have shown that in a flat space-time the tensor Cagy will vanish 

if, and only if, we use the ennuple (27) in Cartesian coordinates (ignoring constant 
rotations), or the corresponding transformed ennuple in other coordinate systems. We 
shall call this appropriate ennuple the 'proper ennuple' for the coordinate system 
used. All proper ennuples revert to the form (27) on transforming to Cartesian co- 
ordinates. The  number of non-zero parameters associated with a proper ennuple 
depends on the coordinate system: for Cartesian coordinates the number is zero; for 
other coordinate systems the number n of parameters is such that 0 < n < 6 .  

4. The ennuple in curved space-time 
In  a curved space-time we no longer have the condition Cagy = 0 to dictate the 

choice of ennuple. Instead, the field equations Caqy;a = 0 provide the sixteen 
equations for the ten components of the metric tensor gag and the six parameters 
appearing in the h,". In  general, these six parameters are functions of all four co- 
ordinates and, as a result, the solution of the field equations presents an intractable 
problem. In order to be able to find solutions we must place some restrictions on the 
parameters, but we must be careful not to be too restrictive or we may obtain equations 
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that do not have solutions. For example, in the previous section, when considering 
polar coordinates in a two-dimensional flat space, we saw that by choosing the very 
simple ennuple corresponding to the parameter $ = 0, the field equations CffBY;a = 0 
were not satisfied. Similarly, in a curved space we must not oversimplify the ennuple 
in our desire to obtain equations which we can reasonably hope to solve. 

We wish to solve the field equations for a static spherically symmetric space-time 
whose metric can be written in the form 

ds2 = A(r) dt2 - B(r) dr2 - C(y)(dO2 + sin2 e d42). 

If C(Y) is not a constant the metric can be written in the form 

ds2 = e2U dt2 - e2 dr2 - i c 2 (  de2 + sin2 0 d42) 

ds2 = e2U dt2 - e2v dr2 - a2(de2 + sin2 0 d42). 

hi“ = 8 9 

(34) 

(35) 

whereas if C(Y) is a constant, C(Y)  = a, then the metric is 

Consider first space-times with metrics of the form (34). The general ennuple is 
given by 

where 2 is the product of the Lorentz matrices and 9 is given by 

It is tempting to use the simple ennuple given by taking 2 as the unit matrix, i.e. by 
taking all the six parameters to be zero, but, as in the two-dimensional polar coordinate 
case, it is easily shown that no solution of the field equations exists for this ennuple. 
The  discussion of the previous section suggests that we should look at the proper en- 
nuple (32) for a Minkowski space-time with spherical polar coordinates and adapt 
this ennuple to the space-time given by (34). In  other words, we use the ennuple 

hiff = 2 B 
where 2 is given by (33) and F by (36). Throughout the rest of this paper, 22 given 
by (33) will be denoted by 0. As stated earlier, 0 is the product of the three circular 
Lorentz matrices with the product taken in any order, the identification of the para- 
meters depending on the order of multiplication. This matrix @ is fundamentally 
related to the use of spherical polar coordinates in Minkowski space. 

We now ask whether it is possible to make this ennuple slightly more general. In  
particular we would like to consider the possibility of introducing the hyperbolic 
parameters into the ennuple. These hyperbolic parameters are, in general, functions 
of all four coordinates, but here we shall take them to be functions of Y only. Our 
reasons for making this restriction are twofold. Firstly, to assume dependence on all 
four coordinates would lead to enormous difficulties in the calculations, so our assump- 
tion is essentially for expediency. Secondly, Plebanski (1962) has drawn attention to 
what he calls the “unconventional” view in which the ennuple components represent 
something physical rather than being simply a useful mathematical tool. This view 
was originally expressed by Einstein (1928). If we adopt it here it is reasonable to 
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expect that in a physical situation, which is static and spherically symmetric, the 
ennuple will be a function of Y only, apart from the contribution due to the matrix 0, 
which is essentially a manifestation of the coordinate system. Hence we shall take the 
ennuple to be of the restricted form 

hi" = @@S (37) 
where CD is a product of three matrices Hl4, H24, H3, and the parameters ,8,, P2, ,8, are 
assumed to be functions of Y only. Now in this product the three hyperbolic matrices 
can be taken in any order and in (37) CD can come before 0 or it can be split, with some 
of the three hyperbolic matrices pre-multiplying 0 and some post-multiplying 0. For 
the purpose of solving the field equations we shall take the ennuple to be given by (37) 
with CD given by 

in that order. Later we shall discuss the results of taking different orders of multiplica- 
tion. 

@ = H3 4(p3)H24(p2 )Hl4(P1) (38) 

The four ennuple vectors are thus given as the rows of the matrix product 

1 sinecos+ cosecos$ -s in$ 0 

s i n e s i n $  cosBsin$ cos4  0 

(39) 

where we have written sh, ch for sinh, cosh, and p1 = ,B1(y), PZ = ,B2(r), P3 = P3(y). 
By exactly similar reasoning to that given above, the ennuple for space-time of the 

form (35) is given by 

s inecos4  cosBcos$ -s in$ 0 

s ine&$,  cos&Jsin+ cos4 0 

cos e -sin 0 0 0  

0 0 0 1  
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where, as before, = P ~ ( Y ) ,  P 2  = P2(r), P3 = /33(r). 
It must be emphasized that the main purpose of the restrictions imposed on the 

ennuple is to reduce the field equations to a set of differential equations which we have 
some reasonable hope of solving. If the resulting equations have no solution, this 
may be due to the restrictions on the ennuple being too strong or of the wrong type. 
On the other hand, if we can solve the equations we cannot be sure that we have found 
all the static spherically symmetric solutions of the field equations, since a less re- 
stricted ennuple may lead to further solutions. 

5. Solutions of the field equations 

found to be 
With the ennuple given by (39), the non-zero components of the tensor Cagy are 

“12, c1Z2> C’l.3, c123, c133, c114, c’24.9 cl347 c144 

c211, c2Z1Y c213, c223,  c233, c214, c2Z4, c234 

C311, C321, c331, C312, C322, c33z, c314, C334 
C411, C4z1, C431, C441, C412, C4z2, C432, C413, C433. 

The sixteen field equations Ca,,;, = 0 can be computed from the values of Cagy. 
These field equations are complicated, but an immediate simplification is found if we 
first consider the (2, 2) equation, which is of the form 

~ ( Y ) - C C O ~ ~ { S ~ P , ~ ~ P , C ~ P ~ + C O ~ ~ ( C ~ P ~ C ~ P ~ -  1)) = 0 
where f(r) is a function of r only. Since the coefficient of cot2 8 must be zero, we have 

pz = p3 = 0. 
Putting P 2 ,  ,.Q3 equal to zero we find that the only field equations which are not 
identically zero are 

(41) 

Caz2;a = - ( v f  - p ’ ) y  e -2v- -p f r  e -  chp, - P l f r  e- shP1 = 0 (42) 

2 
Y 2  

Call;, = - - ( evchp l -1 )+pf2  = 0 

Ca3,;, Caz2;a sin2 8 
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From (44), either p‘ = 0 or pl’ = 0, and it is easily seen that pl’ = 0 leads to a 
contradiction, so we must have p‘ = 0 and we can take p = 0 without loss of generality, 
Putting p = 0 in equations (41)-(45) we obtain 

(46) e - v  - - ChP, 

Equation (47) can be integrated twice to give 

1 
Y2 

sinh /3, = - (Ar3 + B)  (48) 

where A, B are arbitrary constants. From (46) and (48) we have 

so that the solution of the field equations is of the following form. 

Solution I 

1 (49) 
1 

r4 
ds2 = dt2 - 1 + - ( A y 3  + B)2 dr2 - r2 (dP  + sin2 8 d+2). 

For the metric (35) and ennuple given by (40), the same components of Ccc4y are 
non-zero as in the previous case. Again by considering the (2, 2) equation we find 

P 2  = P 3  = 

and, as a consequence, the only field equations which are not identically zero are 

Call;a = p‘2 = 0 (50) 
CaZzia E - a  e-  v(/31’sh,8, +p’ chp,) = 0 (51) 

C“,,;, -(efl-”pl’)’ = 0. (52) 

Ca33;, C“,,;, sin2 8 

From these equations we see that p’ = 0, so that we can take p = 0. Also, P1’ = 0 and v is arbitrary. Hence, in this case the solution of the field equations is 

ds2 = dt2 - e v  dit2 - a2(dP + sin2 8 d+2). 

By a simple transformation of the radial coordinate this can be written in the following 
form. 
Solution 11 

ds2 = dt2 - dY2 - a2(dO2 + sin2 8 d+2) ( 5 3 )  
where Y now denotes the new radial coordinate. 

case of solution I we see that p1 cannot be a constant. 
It should be noted that in this case p1 is a constant, which may be zero. In  the 
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6. Discussion of the solutions 
Consider first solution 11. Under the transformation 

Y = lnpa 
the metric (53) becomes 

a2 

P 
ds2 = dt - (dp2 +p2 do2 +p2 sin2 9 d+2) 

which can be written in the form 
a2 

P 
ds2 = dt2 - 2 (dX2 + dy2 + dz2) (54) 

introducing Cartesian coordinates in the underlying 3-space. If we take ,E1 = 0, as we 
may for this solution, then, under the transformation which takes (53) into (54), the 
ennuple becomes 

hi8 = 

0 P 
a 
- 

P 
a 
- 

P 
a 
- 

0 1 

(55) 

This corresponds to the general ennuple hia = 29 with all six parameters equal to 
zero, i.e. 2 is the unit matrix. Hence, we say that the solution I1 is reducible to a zeyo- 
parameter solution. This means that solution I1 can be obtained by using the simplest 
possible ennuple, if we use a coordinate system in which the metric can be written in 
the form 

ds2 = e2@ dt2 - e2 v(dx2 + dy2 + d 9 ) .  

Turning now to solution I, when B = 0 the transformation 
Y AY = ~ 1 -&p 

changes (49) into the form 

(57) 
R2 

ds2 = dt2- ( dr2 + y2 do2 + y 2  sin2 0 d$2) 
(1 -$Y">" 

where R = 1/A and we have dropped the bar. This is a form of the Robertson-- 
Walker metric, namely 

ds2 = dt2- W2(t) (dr2 + y 2  do2 + y 2  sin2 0 d+2) 
( 1 + * k Y 2 ) 2  

with K = - 1 and W constant. Under the further transformation 

t = $R In ( T ~  -p2)  
2 

P 
the metric (57) becomes 

Y = - {T - ( T 2  --p2)1'2) 

R2 
ds2 = - (d? - dX2 - dy2 - dz2) 

T 2  -p2 
A 4  
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where x, y, x are Cartesian coordinates in the underlying 3-space. Under the co- 
ordinate transformations which result in the form (58) the parameter PI is removed from 
the ennuple, which then takes the form 

R 

so that this solution is also reducible to a zero-parameter solution although, unlike 
solution 11, the metric tensor is time-dependent in the zero-parameter form. 

When B # 0 there appears to be no coordinate transformation which will remove 
the PI or any of the circular parameters. In  this case we say that the solution is an 
irreducible four-parameter solution. 

Solution I with B = 0 and solution I1 are both symmetric spaces in the sense of 
Cartan, i.e. their curvature tensors satisfy 

It is noticeable that these two solutions not only have this property in common, but 
are both reducible to zero-parameter solutions. However, there is no evidence to 
suggest that there is any connection between the two properties. 

The physical interpretation of these solutions presents some difficulties. Kilmister 
showed that the field equations satisfy Laplace's equation v2+ = 0 in the weak-field 
approximation where, as usual, 4 is given by 

g 4 4  = 1+24. 

In both solutions found here, g,, = 1, i.e. + = 0, so Laplace's equation is satisfied 
trivially. For weak fields and slowly moving bodies the geodesic equations for both 
solutions become 

d2r 
dt2 
_ -  - 0  

and so give Newton's equation of motion in the absence of a gravitational field. In  the 
Schwarzschild solution this weak-field approximation is used to identify the constant 
of integration m,  but in the case of solution I the constants A, B cannot be so identified. 

When B = 0, solution I can be written in the form (57) .  This form is known to 
represent a homogeneous, isotropic space-time and so cannot describe the field of an 
isolated mass particle. It follows that, in the context of Kilmister's vacuum field 
equations, the solution describes an empty space-time. Like the de Sitter solution of 
Einstein's field equation this is an empty but curved space-time and so is in disagree- 
ment with Mach's principle. 

When B # 0, solution I has an intrinsic singularity at Y = 0 which cannot be 
removed by coordinate transformation since the scalar 

has an infinity at r = 0. The  geodesics are of the form 

+U=--- -- d2u 
__ 1 2 -  ( + A B  + 2B2u3) - 3ABu2 - 3B2u5 
do2 h2 
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where 1 = dtlds, h = y2  d+/ds and u = l / r .  This is not approximately an ellipse and 
so cannot represent the orbit of a test particle about a central massive particle. Also 
when A = 0, the space-time (49) is asymptotically flat, which is one of the properties 
of the Schwarzschild solution to which Kilmister objected. 

Solution I1 has no singularities and the weak-field approximation suggests that 
there is no central massive particle present. The metric (53) is not asymptotically flat, 
the only non-zero component of the curvature tensor being 

R2,,, = -sin2 i3 

which is independent of the radial coordinate. The  surface of a sphere of radius 
Y = yo = constant is 4n-a2, which is independent of yo. Bonnor (1962), in the course 
of an investigation into Birkhoff’s theorem, rejected a solution with similar properties 
as having no physical significance. However, Robinson (1959) discovered a solution 
of the Maxwell-Einstein equations with this same property and this solution has been 
given a physical interpretation by Dolan (1968), so we shall not reject the solution for 
the reasons given by Bonnor. 

The  geodesics of this solution, for motion in the i3 = 4.r plane, integrate to give 

dt 
- = constant 
ds 

dr  
ds 
_ -  - constant 

- constant. d4  - -  
ds 

Hence, a test particle projected from the origin in a radial direction will continue to 
travel with uniform velocity as in Minkowski space-time, which justifies our sug- 
gestion that this solution does not represent the field of a massive body. In  this case 
space-time is not flat, and, since it is empty, the curvature could be ascribed to the 
presence of distant matter (the ‘fixed stars’) which determines the inertial frame in 
which the particle travels with uniform velocity. This is in accord with Mach’s 
principle. 

Unfortunately the non-radial motion of a test particle is somewhat curious for a 
reasonable physical interpretation. If a test particle is set in motion from a point with 
a velocity in a direction perpendicular to the radius vector at that point, it will describe 
a circle with constant angular velocity since d+/dt is a constant. If it is set in motion 
with a velocity in any other direction it will spiral away from the origin with constant 
angular and radial velocities. I t  is difficult to see how this behaviour of a test particle 
can be reconciled with the physical picture of a space-time containing no matter other 
than that at a very great distance from the origin. 

Despite its difficulties, solution I is the only solution which it seems possible to 
associate with the presence of distant matter. It is interesting, but perhaps idle, to 
speculate whether this physical property can be related to the fact that this solution is, 
in its static form, the only solution obtainable from the simplest possible zero-para- 
meter ennuple. 

7. Order of multiplication of the Lorentz matrices 
In  our discussion of the ennuple to be used in obtaining the components of the 

field equations we have taken the order of multiplication of the Lorentz matrices in the 
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ennuple to be that given by (37) and (38), i.e. 
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2 = 0H34H24H14. 

We nom7 consider the effects of taking other orders of multiplication. 
For the moment we assume that is it desirable to keep the product 0 of the circular 

matrices intact in the form (33),  since 0 is related to the proper ennuple in Minkowski 
space-time. The three hyperbolic matrices can be permuted amongst themselves and 
can collectively or separately pre-multiply or post-multiply 0. When the order of 
multiplication is changed, the four ennuple vectors are altered and it does not neces- 
sarily follow that the components of the field equations will be identical in the different 
cases. We have computed the field equations in all the possible cases and have solved 
them with the following results. 

e.g. 
OH,,H,,H,,, H24OH34H14, H,&H34@H14, etc., the only solutions of the resulting 
field equations are the solutions I and I1 already found. The values of the parameters 
pl, p2, p3 are not necessarily the same in each case. For example, when 

When H14 is to the right of 0, whatever the positions and order of H 2 4 ,  

the solution I has p2‘ = p3’ = 0 rather than pz = p3 = 0 and solution I1 has 
p1 = ,B2‘ = 0, p3‘ = kr, where Fz is an arbitrary constant, rather than pl’ = ,B2 = p3 = 0. 
Solution I1 still qualifies as a zero-parameter solution when written in the form (54) 
because the solution still holds when p1 = p2 = p3 = 0, unlike solution I which, in 
its static form, cannot have 

When H,, is to the left of 0, whatever the positions and order of H 2 4 ,  IT3,, it is 
found that solution I1 is, in every case, the only solution of the field equations. The 
values of the hyperbolic parameters are again different for the various cases, but as 
before the solution still holds when all three parameters are zero. 

Finally, we drop the assumption that the circular matrices must be grouped together 
in the form 0 and consider the case when the six Lorentz matrices are multiplied 
together in random order such as 

= 0. 

= H24H12H14H31H34H23* 

We have not investigated every one of the large number of such possible products, 
but from those that we have investigated it is clear that whenever such a product is 
used the hyperbolic matrices that are interposed between the circular matrices are 
reduced to unit matrices, i.e. the hyperbolic parameters are zero and hence the circu- 
lar matrices again group together to form the matrix 0. For example, in the case 
mentioned above we find p1 = p3 = 0, so that Hi4 and I$,, are unit matrices and 
hence 

2 = H240. 

In  such cases, if H,, is to the right of the last circular matrix, then both solutions I and 
I1 are found; otherwise only solution I1 is found. 

There are two striking features of these results apart from their remarkable 
consistency. Firstly, solution I1 is a solution, and often the only solution, of the field 
equations for every order of multiplication of our particular forms of the six Lorentz 
matrices. Secondly, the circular product matrix 0 associated with the proper ennuple 
in spherical polar coordinates seems to justify the importance that we attach to it by 
resisting all attempts to ‘split’ it with hyperbolic matrices. This is very satisfying but 
unfortunately we do not understand why it possesses this property. 
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8. Conclusion 
The solutions of Kilmister’s field equation found here are disappointing in that 

they do not appear to describe the required physical situation of the gravitational 
field of a massive body, nor do they appear to be in agreement with Mach’s principle as 
required by Kilmister. This is a condemnation of the particular field equations 
proposed by Kilmister, but there are many other sets of field equations that can be 
formed from the ennuple, and one such set may give the desired results. 

Kilmister’s equations suffer from the disadvantage that they are not derivable from 
avariational principle. In  a subsequent paper we hope to describe field equations which 
can be derived from a variational principle in which the hia, rather than theg,,, are the 
quantities to be varied. Even if the solutions of the other field equations are also not 
in accord with Mach’s principle it would appear that an investigation of this type is 
necessary, and perhaps fruitful, if we are to follow Plebanski’s suggestion that the 
ennuple represents something physical. 

Ennuple systems have been used successfully in a number of investigations, usually 
to prove some general results. When they are applied to particular space-times, the 
calculations are bedevilled by the dreadful complications of six parameters, each 
being functions of all four variables. T o  be useful the ennuple must be simplified in 
some way and in this paper we have shown the dangers of too much or incorrect 
simplification, and have demonstrated how simplification can be carried out using the 
proper ennuple so that solutions of the field equations can be found with the minimum 
of effort. We hope that the methods used here will be found to be useful in other 
calculations involving the use of ennuple vectors in particular space-times. 
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